Question Bank

Class-10th

Questions Regarding Matching

Chapter-1

Match the following:-Q. 1

 $\sqrt{3}$ 1.

(a) Non-terminating repeating

2. $\frac{17}{8}$

(b) Terminating repeating

3. 2 (c) Irrational number

4.

(d) Rational number

(Answer:-

- $1. \rightarrow (c)$ $2. \rightarrow (b)$ $3. \rightarrow (d)$ $4. \rightarrow (a)$

Chapter-3

Match the following:-Q. 2

- 1. $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
- $2. \ \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
- $3. \ \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$
- 4. sum of three angles of a triangle
- 5. sum of four angles of a quadrilateral
- 6. Graphically if two lines intersect at one point then pair of linear equations has/have
- 7. If two lines are parallel then pair of linear equation has/have
- 8. If two lines are coincident then pair of linear equations has/have

- (a) No solution
- (b) Infinitely many solutions
- (c) unique solution
- (d) 360°
- (e) 180°
- (f) No solutions
- (g) Many solutions
- (h) Unique solutions

(Answer:-

- $1. \rightarrow (c) \qquad 2. \rightarrow (a) \qquad 3. \rightarrow (b) \quad 4. \rightarrow (e) \quad 5. \rightarrow (d) \\ 6. \rightarrow (h) \\ 7. \rightarrow (f) \\ 8. \rightarrow (g))$

Chapter-4

Match the following:-**Q**. 3

- 1. A quadratic equation $ax^2 + bx + c = 0$ has real roots (a) $b^2 4ac = 0$

2. No real roots

(b) $b^2 - 4ac < 0$

3. Two real and equal roots

- (c) $b^2 4ac > 0$
- $ax^{2} + bx + c = 0$ If $a = 0, b, c \neq 0$
 - $b, c \rightarrow \text{Real number}$

(d) Quadratic equation

- $ax^2 + bx + c = 0$ 5.
 - If $a \neq 0$, a, b, $c \rightarrow \text{Real number}$

(e) Liner equation

- (Answer:- $1. \rightarrow (c)$ $2. \rightarrow (b)$ $3. \rightarrow (a)$ $4. \rightarrow (e)$ $5. \rightarrow (d)$
- - 1

Q. 4 Match the following:-

 $a, a + d, a + 2d, a + 3d, \dots$ 1.

(a) sum of the first n terms of an A.P.

 $S_n = \frac{n}{2} \left[2a + (n-1)d \right]$ 2.

(b) General form of an A.P.

 $S_n = \frac{n(n+1)}{2}$ 3.

(c) $a_n = a + (n-1) d$

nth term of an A.P. 4.

(d) sum of first n positive integers

For an AP: 2,7,12, ··· ··· write the next term 5.

(e) 12

6. For an AP: 21,18,15, ... write the next term (f) 11

For an AP:-5, -1, 3, $7 \cdots \cdots$ write next term 7.

(g) 17

8. Is $2, 4, 6, 8, 10 \cdots$ an A.P.? (h) Not an A.P.

9. Is 1.4.8.13 ····· an A.P.? (i) An A.P.

For an A.P. $3.1.-1.-3.\cdots$ first term 10.

(i) 4

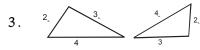
11. For an A.P. -5, -1, 3, $7 \cdots \cdots$ common difference

(k) 3

(Answer:- $1. \rightarrow (b)$ $2. \rightarrow (a)$ $3. \rightarrow (d)$ $4. \rightarrow (c)$ $5. \rightarrow (g)$ $6. \rightarrow (e)$

$$7. \to (f) \ \ 8. \to (i) \ \ 9. \to (h) \ \ 10. \to (k) \ \ 11. \to (j) \)$$

Chapter-6


Q. 5 Match the following:-

1. All squaures are

(a) Equilateral

2. All triangles are Similar

(b) Similar

2. both triangles are (c) Congruent

(Answer:-
$$1. \rightarrow (b)$$
 $2. \rightarrow (a)$ $3. \rightarrow (c)$)

Q. 6 Match the following:-

1. In a right triangle $\triangle ABC$

 $\frac{ar(\Delta ABC)}{ar(\Delta POR)} = \left(\frac{AB}{PO}\right)^2$ (a)

If $AC^2 = AB^2 + BC^2$ then which theorem it follows?

2. If $\triangle ABC \sim \triangle PQR$ then

(b) Pythagoras theorem

3. If Sides of two similar triangles are in the ratio of

4:9 then area of these triangles are in the ratio:

(c) 2:3

4. If areas of two similar triangles are in the ratio

4:9 then the sides of these trangles are in ratio:

(d) 16:81

(Answer:- 1. \rightarrow (b) 2. \rightarrow (a) 3. \rightarrow (d) 4. \rightarrow (c)

Q. 7 Match the following:-

The distance between the points

$$P(x_1, y_1,)$$
 and $Q(x_2, y_2)$ is

(a)
$$\sqrt{x_1^2 + y_1^2}$$

The coodinates of the mid-points

$$P\left(x_{1},y_{1},\right)$$
 and $Q\left(x_{2},\ y_{2}\right)$ are

(b)
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

The coordinates of the mid point

$$(-4, 6)$$
 and $(8, 2)$ are

(c)
$$(2, 4)$$

4. The distance of the point

$$P(x_1, y_1)$$
 from the origin

(d)
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Distance between the points

$$(0,0)$$
 and $(6,8)$ is

(Answer:- $1. \rightarrow (b)$ $2. \rightarrow (d)$

$$2. \rightarrow (a$$

$$3. \rightarrow (c)$$
 $4. \rightarrow (a)$ $5. \rightarrow (e)$

Chapter-8, 9

Q. 8 Match the following:-

(a)
$$\frac{\sqrt{3}}{2}$$

2.
$$\sin^2 30^\circ + \cos^2 30^\circ$$

(b)
$$\frac{1}{\sqrt{2}}$$

$$3. \cos 45^{\circ}$$

$$4. \sin 60^{\circ}$$

(d)
$$\frac{1}{2}$$

6.
$$\sec 45^{\circ}$$

(f)
$$\frac{1}{\sqrt{3}}$$

7.
$$\tan 30^{\circ}$$

(g)
$$\sqrt{2}$$

(Answer:- $1 \rightarrow (d)$

$$\rightarrow$$
 (c) 3.-

$$\mathbf{4}. \rightarrow (\mathbf{a}) \quad \mathbf{5}. \rightarrow (\mathbf{e})$$

$$2. \rightarrow (c)$$
 $3. \rightarrow (b)$ $4. \rightarrow (a)$ $5. \rightarrow (e)$ $6. \rightarrow (g)$ $7. \rightarrow (f)$

Match the following:-Q. 9

1.
$$\sin^2 \theta + \cos^2 \theta$$

(a)
$$1 + \tan^2 \theta$$

2.
$$\csc^2 \theta$$

(b)
$$1 + \cot^2 \theta$$

3.
$$\sec^2 \theta$$

4.
$$cosec A$$

(d)
$$\cos A$$

5.
$$\sin(90^{\circ} - A)$$

(e)
$$\frac{1}{\sin A}$$

6.
$$\tan(90^{\circ} - A)$$

(f)
$$\frac{1}{\cot t}$$

(g)
$$\cot A$$

8.
$$\sin \theta$$

(g)
$$\cot A$$

9. $\tan \theta$ (i) perpendicular (P) Hypotenuse (H) 10. $\cot \theta$ (j) Hypotenuse (H) perpendicular (P) (k) Hypotenuse (H) 11. $\csc \theta$ Base (B) 12. $\sec \theta$ **(I)** Base (B) perpendicular (P) (Answer:- $1. \rightarrow (c)$ $2. \rightarrow (b)$ $3. \rightarrow (a)$ $4. \rightarrow (e)$ $5. \rightarrow (d)$ $6. \rightarrow (g)$ 7. → (f) 8. → (i) 9. → (h) 10. → (l) 11. → (j) 12. → (k)) Chapter-10 Match the following:-A circle hastangants (a) secant A tangent to a circle touches the circle atpoint (b) many The line which intersects the circle at two points is called.......... (c) one A circle can have..... of parallel tangents. Point of contact (d) The common point of a tangent to the circle and the circle is called..... (e) many pairs $3. \rightarrow (a)$ $4. \rightarrow (e)$ $5. \rightarrow (d)$ (Answer:- $1 \rightarrow (b)$ $2. \rightarrow (c)$ Chapter-12 Q. 11 Match the following:-1. Area of the sector (a) $2\pi r$ $\frac{\frac{\theta}{360^{\circ}} \times \pi r^2}{\frac{\theta}{360^{\circ}} \times 2\pi r}$ Length of an arc of a sector Area of a circle (c) 4. Circumference of a circle (d) (Answer:- $1 \rightarrow (b)$ $2. \rightarrow (c)$ $3. \rightarrow (d) \quad 4. \rightarrow (a)$ Chapter-13 Q. 12 Match the following:-(a) $\pi r^2 h$ Total surface area of a cylinder $2\pi rh + 2\pi r^2$ 2. Volume of a cylinder (b) 3. Total surface Area of a cone (c) $\pi r l + \pi r^2$ (d) 4. Volume of a Sphere

Q. 10

1.

2.

3.

4.

5.

2.

3.

(Answer:- $1. \rightarrow (b)$ $2. \rightarrow (a)$ $3. \rightarrow (d)$ $4. \rightarrow (c)$)

Q. 13 Match the following:-

- 1. class mark
- 2. Formula of mode

- (a) $l + \left(\frac{f_{1-f_0}}{2f_1-f_0-f_2}\right) \times h$
- (b) Upper class limit + lower class limit

2

- 3. Formula of median
- 4. 3 median
- 5. Mean by Direct method
- 6. Mean by assumed mean method

- (c) mode + 2 (mean)
- (d) $l + \frac{\left(\frac{n}{2} c \cdot f\right)}{f} \times h$
- (e) $\bar{x} = a + \frac{\sum f_{id_i}}{\sum f_i}$
- (f) $\bar{x} = \frac{\sum f_{ix_i}}{\sum f_i}$

(Answer:- $1. \rightarrow (b)$ $2. \rightarrow (a)$ $3. \rightarrow (d)$ $4. \rightarrow (c)$ $5. \rightarrow (f)$ $6. \rightarrow (e)$

Chapter-15

Q. 14 Match the following:-

A card is drawn from a well-shuffled deck of 52 cards

1. Probability of getting a king

(a)

2. Probability of getting a spade

(b)

3. Probability of getting the queen of diamond

(c)

4. Probability of getting a face card

(d)

5. Probability of getting a red face card

(e)

6. Probability of getting a king of red colour

(f)

- (Answer:- 1. \rightarrow (f) 2. \rightarrow (a) 3. \rightarrow (b) 4. \rightarrow (c) 5. \rightarrow (d) 6. \rightarrow (e) 7. \rightarrow (f))

Q. 15 Match the following:-(Mixed Sample Question)

1. smallest whole number

(a) 2

2. smallest natural number

(b) 0

3. smallest even prime number

90° (c)

4. measure of right angle

(d) 1

(Answer:- $1. \rightarrow (b)$ $2. \rightarrow (d)$ $3. \rightarrow (a)$ $4. \rightarrow (c)$

Mark (\checkmark) against correct statement and mark (\times) against wrong (incorrect) statement.

Chapter-1

1. a = bq + r is a part of Euclid's division algorithm.

- (\checkmark)
- 2. Euclide's division algorithm is used to compute HCF of two given positive integers.
- (\checkmark)

3. HCF is the smallest factor of two positive integers.

 (\times)

4. HCF is the smallest common factor of two integers.

 (\checkmark)

5. HCF of two consecutive prime numbers is 2.

(X)

(✓) 6. HCF of two consecutive prime numbers is 1. 7. HCF of 24 and 4 is 4. (\checkmark) (\checkmark) 8. Every composite number can be factorised as product of primes. (X)9. HCF of 26 and 91 is 7. 10. HCF of 26 and 91 is 13. (\checkmark) 11. $\sqrt{5}$ is a rational number. (X)12. $3\sqrt{2}$ is a irrational number. (\checkmark) 13. $6 + \sqrt{2}$ is a irrational number. (\checkmark) 14. $3\sqrt{2}$ is a rational number. (X)15. L.C.M of two numbers is the smallest common multiple. (\checkmark) Chapter-2 1. The degree of linear polynomial of one variable is 1. (\checkmark) 2. Number of zeroes of $x^2 + 4x + 9$ is 2. (\checkmark) 3. Degree of polynomial $x^2 + 4x^3 + 6x$ is 2. (\times) 4. The highest power of a variable in the polynomial is called, degee of the polynomial. (X)5. $x^2 + 3x + 2$ is a quadratic polynomial. **(**✓) 6. Number of zeroes of quadratic polynomial is 3. (X)7. In the polynomial $x^2 - Sx + P$, S is sum of zeroes. (\checkmark) 8. In the polynomial $x^2 - Sx + P$, P is sum of zeroes. (X)Chapter-3 1. Equation 4x + y = 6 has no solution. (X)2. Equation 4x + y = 6 has many solution. (\checkmark) 3. In equation 2x + y = 3, If y = 3 then x = 0 (\checkmark) 4. A pair of linear equations in two variables has one and only one solution. (X)5. If graphical representation of a pair of linear equations in two variables are (\checkmark) parallel lines then the system has no solution. 6. If graphical representation of a pair of linear equations in two variables are coincident lines, Then system has no solution. (\times) 7. In the pair of linear equations $a_1x + b_1y = c_1$ $a_2x + b_2y = c_2$ **(**✓) If $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ then system has unique solution. 8. If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ then system has no solution. (\times)

9.	If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ then system has many solution.	(×)
10.	In equation $4x + y = 0$, if $x = 6$ then $y = -4$	(×)
	Chapter-4	
1.	A quadratic equation can be used to find the area of a rectangle.	(√)
2.	x + 4 = 0 is a quadratic equation.	(×)
3.	$x^3 + 4x + 6 = x(x + 2)$ is not a quadratic equation.	(√)
4.	The discreminant of quadratic equation is $D = b^2 - 4ac$	(√)
5.	The formula $x = \frac{-b \pm \sqrt{D}}{2a}$ can be used to find roots of a cubic equations.	(\times)
6.	4, -3 are roots of equation $(x-4)(x+3)=0$	(√)
7.	If roots of a quadratic equation are real then $D < 0$	(\times)
8.	If roots of a quadratic equation are equal then $D>0$	(\times)
9.	If $D=0$ then roots of a quadratic equation are real and equal.	(√)
10.	. 4 and 3 are roots of the quadratic equation $x^2 - 7x + 12 = 0$.	(√)
	Chapter-5	
	2,3,4,5 is not an A.P.	(×)
2.	Common Difference = $a_2 - a_1$ where a_n is n^{th} term of an A.P.	(√)
3.	Common Difference of an A.P: $3,1,-1,-3,$ is -2 .	(√)
4.	$a_n = a + (n-1)d$ is used to find the n th term of an A.P.	(√)
5.	Common Differance of an A.P. cannot be a negative number.	(×)
6.	2,4,8,16, is not an A.P	(√)
7.	10 th term of 2,7,12, is 47	(√)
8.	The Difference between $\textbf{4}^{\text{th}}$ and $\textbf{3}^{\text{rd}}$ term is called common difference of an $A.P$	(√)
	The Common Difference of an $A.P$ can be negative, positive or zero. Sum of first n terms of an $A.P.$ is given by the formula	(√)
	$S_n = \frac{n}{2} \left[2a + (n - 1d) \right]$	(√)
	$a_n=a+(n+1)d$ is used to find the $n^{\rm th}$ term of an A.P. The sum of first n natural number is given by the formula	(×)
	$S_n = \frac{n(n+1)}{2}$	(√)
13.	In AP: 4,10,16,22 common difference is 6 and first term is 4. Chapter-6	(√)
1.	Two congruent triangles are of same shape and of equal measurement.	(√)
2.	Two congruent triangles are also similar triangles.	(√)
3.	Squares of equal sides are congruent.	(√)

- 4. Corresponding angles of similar triangles are equal. (✓)
- 5. Corresponding angles of congruent triangles are not equal. (X)
- 6. Corresponding sides of similar triangles are proportional. (✓)
- 7. If $\triangle ABC \sim \triangle DEF$ then AB = DE (×)
- In right angled triangle, the hypotenuse is equal to the sum of squares
 of other two sides. (✓)
- 9. Pythagoras theorem is not applicable to obtuse angle triangle. (✓)
- 10. The perpendicular is the longest side of the right triangle. (\times)
- 11. 7, 24, 25 is not a pythagorian triplet. (\times)
- 12. SAS is not criterion for the similar triangle. (\times)
- 13. The ratio of the area of two similar triangles is equal to the squareof the ratio of their corresponding sides. (✓)

- 1. Origin is the intersecting point of x-axis and y-axis. (✓)
- 2. Point (x,0) lies on y-axis. (\times)
- 3. Point (2,0) lies on x-axis. (\checkmark)
- 4. Point (0, 6) lies on y-axis. (\checkmark)
- 5. Distance of the point (x, y) from the origin is $\sqrt{x^2 + y^2}$
- 6. A graph can be divided into two quadrants. (X)
- 7. A graph can be divided into four quadrants. (✓)
- 8. The coordinates of origin are (0,0).
- 9. Abscissa of point (6, 0) in 6. (\checkmark)
- 10. Ordinate of point (-7, 4) in -7. (\times)
- 11. $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$ is called section formula. (\times)
- 12. Sides of a isosceles triangles are of equal length. (✓)
- 13. No Side of a equilateral triangle is equal. (\times)
- 14. Each angle of a right triangle is of 90° . (\times)
- 15. Each side of an equilateral triangle is of equal length. (✓)
- 16. Collinear points lie on the same triangle. (\times)
- 17. Collinear points lie on the same line. (\checkmark)
- 18. Opposite sides of a parallelogram are not equal. (\times)
- 19. The formula to find the coordinates of mid-point is $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ (\checkmark)

20.	$(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2})$ is section formula.	(√)
	Chapter-8	
1.	In right angled triangle only one angle is of 90°	(✓)
2.	Measurement of sides of a triangle is called algebra.	(×)
3.	Trigonometry is called measurement of triangles.	(\times)
4.	The relationship between angles and sides is called Trigonometry.	(√)
5.	Trigonometry is not used to measure heights and distances.	(×)
6.	In right angled triangle, hypotenuse is the longest side.	(×)
7.	Pythagoras theorem is applied to isosceles triangle.	(×)
8.	Value of sin 0° is 0	(✓)
9.	Value of tan 30° is $\sqrt{3}$	(×)
10.	$sin(90^{\circ} - \theta) = tan\theta$	(×)
11.	Sum of three angles of a triangle is 180°.	(\checkmark)
12.	Value of tan A is defined for A= 90°	(×)
13.	$sin(90^{\circ} - \theta) = cos\theta$	(\checkmark)
14.	$\sin^2\theta + \cos^2\theta = 1$	(\checkmark)
15.	$9sec^2A - 9tan^2A = 6$	(×)
16.	$1 + tan^2A = sec^2A$	(\checkmark)
17.	$\frac{\sin 16^{\circ}}{\cos 74^{\circ}} = 1$	(√)
18.	$cosec\ A = \frac{1}{sinA}$	(√)
19.	$tanA = \frac{1}{cotA}$	(√)
20.	$sin30^{\circ} = \frac{1}{2}$	(√)
21.	$\cos 60^{\circ} = \frac{1}{2}$	(√)
	If $tan45^{\circ} = 1$ then $cot45^{\circ}$ is not defined.	(×)
23.	$\frac{\sin 18^{\circ}}{\cos 72^{\circ}} = 2$	(×)
	The value of $sin^2\theta + cos^2\theta$ is equal to 1	(√)

25.
$$sec^2\theta - tan^2\theta$$
 is equal to 2 (\times)

26.
$$tan \theta = \frac{Base}{Hypotenuese}$$
 (×)

- 1. The line drawn from the eye of an observer to the location of object is called line of sight. (\checkmark)
- 2. There is not any difference between angle of elevation and angle of depression. (\times)

3.	Angle of elevation is above the horizontal level.	(√)				
4.	Angle of elevation is below the horizontal level.					
5.	Angle of depression not above the horizontal level.	(√)				
6. 7.	Angle of depression not below the horizontal level. If in a right triangle length of base and perpendicular is equal then	(×)				
	base angle is of 45°	(√)				
	Chapter-10					
1.	End points of a chord lie on the circle.	(√)				
2.	There can be only one point common between two circles.	(x)				
3.	The circle and its tangents has two common point.	(x)				
4.	The tangent of circle touches the circle at only one point.	(✓)				
5.	A circle has two tangents.	(x)				
6.	A circle has many tangents.	(√)				
7.	The diameter of a circle is half of the radius.	(×)				
8.	Concentric circles have common centre.	(√)				
9.	The radius of the circle is half of the diameter of the circle.	(√)				
	The diameter of the circle is twice the radius of that circle. The tangent of the circle is perpendicular to radius passing through	(✓)				
	point of contact.	(√)				
12.	Length of tangents drawn from an external point is not equal.	(x)				
13.	Perpendicular drawn from the centre of the circle bisects the chord.	(✓)				
14.	If diameter of circle is 14cm then its radius will be 7cm.	(√)				
15.	A tangent subtends an angle of 180° with the radius of the circle. Chapter-11	(x)				
1.	To find the mid-point of a line, construction can be done with the help of					
	geometrical compass and scale.	(✓)				
2.	A tangent can be drawn to the circle at any point on the circle.	(✓)				
3. 4.	A tangent to the circle can be drawn from a point inside the circle. If scale factor is less than one newly constructed similar triangle will be	(x)				
	of small area.	(✓)				
5.	Number of tangents drawn from an external point to the circle is 2.	(✓)				
6.7.	Centre of the circle is the intersecting point of parallel chords. Centre of the circle is the intersecting point of perpendicular bisectors	(x)				
	of non-parallel chords.	(✓)				

8. A circle can have more than one centre.	(\times)
Chapter-12	
1. Area a circle is $2\pi r$.	(×)
2. The radius of circle is twice the diameter.	(\times)
3. The region bounded between an arc and chord is called segmant.	(✓)
4. Sector is a region between radius and chord.	(\times)
5. Sector is a region between two radii of circle.	(✓)
6. The ratio of circumference of the circle to the diameter is called π .	(✓)
7. The ratio of circumference of the circle to the radius is called π . 8. To compute the length of boundary of a circular park, formula	(×)
for circumference of the circle is used.	(✓)
9. Area of the minor segment is larger than the area of sector.	(\times)
10. Area of the major segment is greater then the area of minor segment.	(√)
11. Area of sector of a circle is $\frac{2\pi r\theta}{360^{\circ}}$, where θ is the angle between two radii. 12. Formula to find the length of an arc of a circle is $\frac{2\pi r\theta}{360^{\circ}}$, where r is	(×)
radiues and $\; \theta \;$ is degree measure of the angle subtended at the centre.	(✓)
13. Formula for the circumferene of a circle is $2\pi r$.	(√)
14. Formula for area of a circle is πr^2 .	(✓)
15. Area of the quadrant of a circle is $\frac{\pi r^2}{4}$.	(✓)
16. Area of the sector of a circle is equal to $\frac{\pi r^2 \theta}{360^\circ}$, where as r is radius.	(✓)
Chapter-13	
1. Formula for finding the volume of a cylinder of radius r and height h , is $\pi r^2 h$.	(✓)
2. The volume of a sphere of radius $3 \mathrm{cm}$ is 12π .	(×)
3. Volume of a cuboid is a^3 .	(×)
 4. Volume of a cube is l×b×h. 5. Area of the roof of cubical room is a², where as a is the length of the 	(√)
edge of the cube.	(✓)
6. Any one part of cone is called frustum.7. While removing smaller right circular cone from bigger right circular	(×)
cone, we get a frustum of a cone.	(√)
8. Formula for the volume of cone is $\frac{1}{3} \pi r^2 h$.	(✓)
9. Volume of a cuboid is $l \times b \times h$.	(✓)
10. Lateral surface area of a cuboid is 2 $(l+b)$ h.	(✓)

11. If radius of the sphere is 7cm them its curved surface area is $154 cm^2$. (X)12. The shape of a cap is of a frustum. (\times) (X)13. To find the volume of a Road Rollar, formula for the volume of cone is used. 14. The shape of the base of a cone is spherical. (\times) **(✓**) 15. The shape of the base of cone is circular. Chapter-14 (X)1. Numerical representative is measure of central tendency of a data. 2. Mean is not a measure of central tendency. (\times) **(✓**) 3. Mean, median and mode are measure of central tendency. 4. Class mark is difference of upper class limit and lower class limit. (X)**(✓**) 5. Class mark is half of the sum of upper class limit and lower class limit. (X)6. Direct method cannot be used for computing mean. 7. Direct method, step-deviation method and Assumed mean method are used to calculate mean. **(✓**) 8. To compute median, mean and mode continuous of class intervals is necessary. (\times) 9. $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ is Direct method to compute mean. **(✓**) Chapter-15 1. When a coin is tossed then maximum possible outcomes are 2. (\checkmark) 2. $Probabilty = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ possible\ outcomes}$ (\checkmark) 3. The probability of an impossible event is zero. **(**✓) 4. When a coin is tossed, probability of getting head and tail is $\frac{1}{3}$. (X)5. The probalility of a sure event is zero. (X) (\checkmark) 6. The probability of sure event is 1. 7. The probability of every event is negative. (X)8. Probality of an event lies between 0 and 1. (\times) 9. The probality of an impossible event cannot be calculated. (X)10. When a die is thrown once, the probability of getting a number greater than 4 is $\frac{2}{6}$. (\checkmark) 11. When a die is thrown, probability of getting a prime number is $\frac{1}{6}$. (X)12. The probability of an impossible event is 1. (\times) 13. $P(E) + P(\bar{E}) = 1$ (\checkmark)

 (\checkmark)

14. When a coin is tossed, probability of getting tail is $\frac{1}{2}$

15	. It is impossi	ible to find the	probability of a	n absent stud	dent in the class. (\times)	
		N	/Iultiple choi		ons	
				hapter-1		
Q 1.	(a) Natural	ber, does not b number	=	(c) Rational	number (d) Real num Answer:- (a) Natural numbe	
Q 2.	Euclid's divis	sion algorithm	is used to find		Allswer (a) Natural Hullipe	:1
-		•	(c) Addition	(d) Multipli	cation	
					Answer:- (a) H.C.F	
Q 3.		nal and irratio		" (a) 14/b a l a "	oursels on (d) Nistrums I source is a	
	(a) Rationa	i number (b) ii	rrational numbe	r (c) whole i	number (d) Natural number Answer:- (b) Irrational num	her
Q 4.	Which of the	e following is a	rational numbe	r?	/ matter (a) matterial name	
	(a) $\sqrt{2}$	(b) $\sqrt{3}$	(c) $\sqrt{5}$	(d) 5		
					Answer:- (d) 5	
Q 5.		_	n irrational num	_		
	(a) 2	(b) 3	(c) 5	(d) √5	Answer:- (d) $\sqrt{5}$	
Q 6.	How many f	actors of a prir	ne number are t	there ?	Allswer (u) V3	
-, -	(a) Two	(b) Three	(c) Four	(d) Five		
					Answer:- (a) Two	
Q 7.	What is the	HCF of 3 and 9	?			
	(a) 3	(b) 6	(c) 9	(d) 1		
					Answer:- (a) 3	
Q 8.	What is the	HCF of 4 and 6	?			
	(a) 4	(b) 2	(c) 6	(d) 8		
					Answer:- (b) 2	
Q 9.	What is the	LCM of 4 and 8	3 7		Allower: (b) 2	
Q 3.			(c) 12	(4) 2		
	(a) 4	(n) o	(C) 12	(u) 2	Answer:- (b) 8	
Q 10.	What is the	LCM of 3 and 4	1?		Allswei - (b) o	
	(a) 3		(c) 8	(d) 12		
	(4) 5	(~)	(6) 6	(4) 12	40.45	
					Answer:- (d) 12	
Q 1.	What is the	degree of lines	<i>د.</i> ? ar polynominal	hapter-2		
Q 1.						
	(a) 2	(b) 1	(c) 3	(d) 4		
					Answer:- (b) 1	
Q 2.	How many z	eroes of a qua	dratic polynomi	al are there (atmost)?	
	(a) 1	(b) 2	(c) 3	(d) 4		
					Answer: (h) 2	

(d) 4

(c) 3

Q 3. What is the degree of a quadratic polynomial?

(b) 2

(a) 1

					Answer:- (b) 2
Q 4.	If \propto and β a	are zeroes of qu	adratic polyor	nomial then o	$c + \beta =$
	(a) $\frac{c}{a}$	(b) $c + a$	(c) $b + a$	(d) $\frac{-b}{a}$	
	и			и	Answer:- (d) $\frac{-b}{a}$
Q 5.	What is the	degree of polyr	nomial $P(x) =$	$= 5x^3 + x -$	u
		(b) 2			
	(0) 1	(2) 2	(0)	(3)	Answer:- (c)
Q 6.	In quadratic	polynomial as	$x^2 + hx + c$.	<i>a.</i> is not equa	, ,
٠,٠					
	(a) 0	(b) 1	(c) 2	(d) 3	
					Answer:- (a) 0
Q 7.		1 is an examp			
		tic polynomial			nial
	(c) Linear po	olynomiai	(u)	biquadratic	Answer:- (b) Cubic polynomial
Q 8.	What is nun	nber of zeroes i	n the figure?	★ y	talenter (e) easie perynerman
	(a) 1 (b) 2	nber of zeroes i (c) 3 (d) 0		x' *	
	() ()	() ()		♦ y'	Anguery (d) 0
Q 9.	What is num	har of zaroos i	o the figure?	фу	Answer:- (d) 0
Q 3.		nber of zeroes i	n the lighte:	× × ×	×
	(a) 0 (b) 1	(c) 2 (d) 3			Answer:- (c) 2
				Chapter-3	Answer:- (C) 2
01.	If $\frac{a_1}{a_1} = \frac{b_1}{a_1} = \frac{a_1}{a_1} = \frac{a_1}{a_1}$	$=\frac{c_1}{c_1}$ then which			plicable to the pair of linear
~	a_2 b_2 equations?	c ₂		8 22 ap	production and pair or initial
	•	que solution(b)	No solutions(c) Infinitely	many solution(d) None of these
				Answer:-	(c) Infinitely many solution
Q 2.	If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	then which of	the following	will be appli	cable to the pair of linear
	equations?				
	(a) An unio	que solution(b)	No solutions		many solution(d) None of these
	- a ₁ b ₁ .				(b) No solutions
Q 3.	If $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ th	en which of the	e following wil	l be applicable	le to the pair of linear
	equations?		N	\	
	(a) An uniq	ue solution(b)	No solutions(d	-	any solution(d) None of these (a) An unique solution
Q 4.	While solvin	g linear pair of	equations gra		es intersect at a point then which of
		g will be applica		• •	•
	(a) One solu	ution (b) No so	lutions (c) M		f) Four solutions
0.5	Mbila aabii-	a pair of lines.	oguations are		(a) An unique solution
Q 5.		ll be a applicab	-	princally, II IIN	es are parallel, which of the

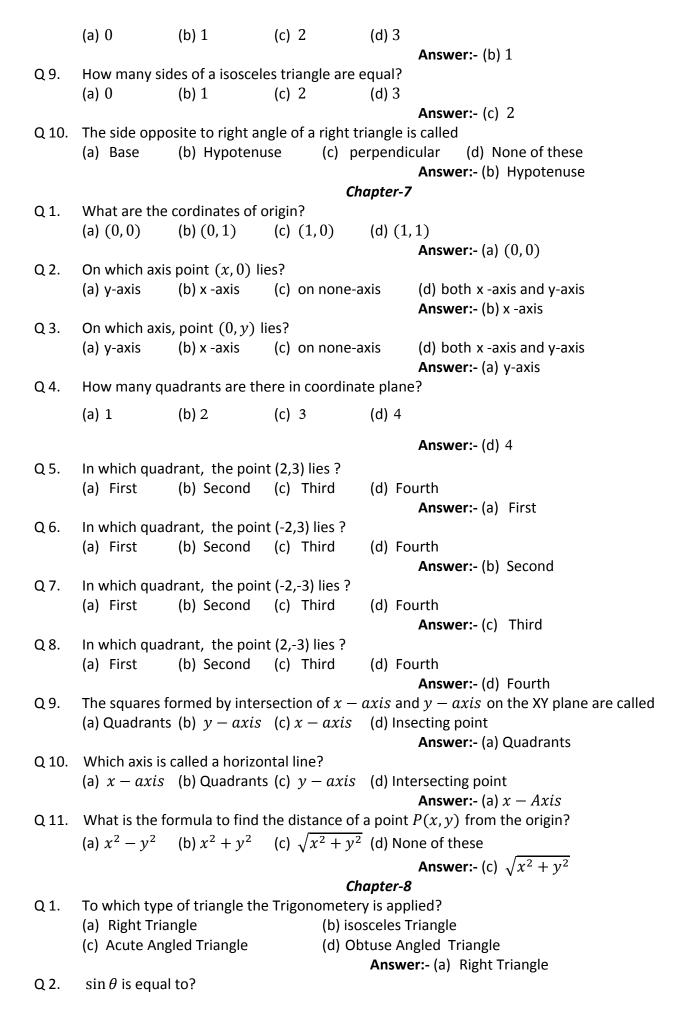
Answer:- (b) No solutions

Chapter-4

Q 1. Which of the following is not a method of solving a quadratic equation?

(a) One solution

(b) No solutions (c) Many solution


(d) Four solutions

	(c) Discrimir	nat method	(d)	Addition n	nethod	
	_				Answer:- (d) Addition method
Q 2.	$D = b^2 - 4a$		_		_	
	(a) Discrimir	nat (b) Fa	actorisation	(c) Pe	=	e (d) Subtraction
					•	a) Discriminat
Q 3.		ots of a quadra	=			
	(a) $D < 0$	(b) $D > 0$	(c) $D = 0$	(d) $D =$		-1 D < 0
0.4	Noture of rec	ots of a quadra	tic cauction i	c rool and	Answer:- (a) $D < 0$
Q 4.		(b) $D > 0$	•		•	
	(a) $D < 0$	(0)D>0	(c) D = 0	(u) D -	– ∠ Answer:-(c(D = 0)
Q 5.	Which of the	following is a	guadratic egu	uation?	Allower. (C/D = 0
ς.					$= x^2 + 2$	(d) $x^2 - x + 4 = 0$
	(1)	(1)		(-)		d) $x^2 - x + 4 = 0$
Q 6.	Which of the	following is a	quadratic for	mula?	`	,
	(a) $-h \perp 2a$	(b)	$0 \pm \sqrt{b^2 - 4ac}$	(c) $\frac{-a \pm \sqrt{b}}{a}$	$\frac{2-4ac}{}$	$-h \times 2a$
	(a) D 1 Zu	(6)	2 <i>a</i>	21		
					Answer:- (b) $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
				Chapter-5		24
0 1	In AP: 2, 4, 6, 8	3 which	is the first te	rm?		
α 1.						
	(a) 2	(b) 4	(c) 6	(d) 8		
					Answer:- (a) 2
					, , ,	u, 2
Q 2.	In AP: 3, 5, 7, 9	, what	is common di	ifference?		
	(a) 2	(b) 3	(c) 4	(d) 5		
	(-, -	(- 7	(-)	(-)	_	
					Answer:- (a) 2
Q 3.	What is com	mon difference	of an AP: 3,	3,3,3	?	
	(a) 1					
	(4) 1	(8) 2	(6) 5	(4) 0	Answer:- (d) 0
0.4			: AD: 2 5 7 4	2 1 1 2	(, -
Q 4.		erms are there				
	(a) 2	(b) 3	(c) 5	(d) 7		\ F
					Answer:- (c) 5
5.	What is the la	ast term of an <i>i</i>	AP: 4,6,8,10	,12?		
	(a) 4	(b) 8	(c) 1	(d) 12		
					Answer:- (d) 12
Q 6.	Which is the n	ext term of an	AP: 10.20.30	.40	?	
Ψ.	(a) 10	(b) 20	(c) 50	(d) 55	,	
	(a) 10	(b) 20	(c) 30	(u) 33	Answer:- (c) 50
						c, 50
Q 7.		next term of a			!	
	(a) 5	(b) 13	(c) 11	(d) 9		
					Answer:- (•
Q 8.					3 then seco	nd term will be:-
	(a) 2	(b) 3	(c) 5	(d) 7		

(b) completing square method

(a) Factorisation method

							Answer:- (c) 5
Q 9.	What is the n	ext term	of a	n AP: 5,7	,9,1	1,	?
	(a) 5	(b) 9		(c) 13		(d) 15	
0.10	C		£	4D b			Answer:- (c) 13
Q 10.	Common differ (a) Positive					(4) VII	of these
	(a) Positive	(D) NE	gativ	e (c) 2e	10	(u) Ali	Answer:- (d) All of these
O 11	What is comn	oon diffe	rone	co of an Al	D· 5	2 1 –1	
Q 11.	(a) 4			(c) -2			••••••
	(a) 4	(6) 0		(C) 2	•	(u) 1	Answer:- (c) -2
O 12	In an AP: 3,5,	.□. 9.		find t	he n	nissing terr	• •
Q 12.	(a) 1					(d) 5	
	(α) Ι	(6) /		(6) 10		(a) 5	Answer:- (b) 7
O 13.	In an AP: 1,2,	3.4		what i	s the	- 10 th term	?
Q 10.	(a) 2						•
	(3) =	(5) 5		(6) 10		(4) 5	Answer:- (c) 10
Q 14.	In an AP, if 2 nd	^d term is	6 ar	nd commo	n dif	ference is	4, then first term is
	(a) 4	(b) 2		(c) 6		(d) 8	
O 1E	What is called	l a finita	ΛD	2			Answer:- (b) 2
Q 13.	(a) Which ha				ns	(b) Inf	inite terms
	(c) equal term						ore terms
					Ans		Which has finite number of terms
0.1	All aggilators	ا ممانية ا		_	2	Chapter-6	
Q 1.	All equilateral (a) Congruen	_				Faual	(d) Corrosponding
	(a) congraci		(6)	Siiriiiai	(0)	Equal	Answer:- (b) Similar
Q 2.	What does the	symbol	≅ re	epresents ²	?		
	(a) Congruen	nt	(b)	Similar	(c)	Equal to	(d) Corrosponding
0.2	What does th	o symbo	d ron	rocontc?			Answer:- (b) Similar
Q 3.	What does th (a) Congruen	=	-		(c)	Faual to	(d) Corrosponding
	(4) 551.81461		(~)	5	(0)	29001 10	Answer:- (a) Congruant
Q 4.	All squares ar						
	(a) Congruen	nt	(b)	Similar	(c)	Equal to	(d) Corrosponding
Q 5.	All circle are						Answer:- (b) Similar
Q J.		nt	(b)	Similar	(c)	Equal to	(d) Corrosponding
	(4) 2218		()		(-)	_40.0	Answer:- (b) Similar
Q 6.	If $\triangle ABC \sim \triangle A$	DEF the	en $\frac{A}{D}$	$\frac{dB}{dE} =$			
	(a) <i>AB</i>	(b) <i>DE</i>	D	(c) $\frac{BC}{A}$		(d) $\frac{BC}{A}$	
	. ,	` '		` ' EF		` ' AC	Answer:- (c) $\frac{BC}{EE}$
0.7	If $\triangle ABC \cong$	Λ DFF	then	A = A			EF
ζ,,	(a) $\angle D$						3
				. ,		. ,	Answer: - (a) $\angle D$
Q 8.	How many an	gles of a	righ	t triangle	is of	90 ⁰ ?	


```
(a) \frac{Base}{Hypotenuse} (b) \frac{Perpendicular}{Hypotenuse}
                                                                           Answer:- (b)
          \cos \theta is equal to?
Q 3.
                                          (b) \frac{Perpendicular}{Hypotenuse}
                                                                           Answer:- (b)
Q 4.
           \tan \theta is equal to?
                                                \frac{Perpendicular}{Hypotnuse}
                                                                            (c) \frac{Perpendicular}{Base}
                                                                                                <u>Perpendic</u>ular
                                                                           Answer:- (c)
Q 5. \tan \theta = ...
          (a) \frac{\sin \theta}{\cos \theta} (b) \frac{\cos \theta}{\sin \theta} (c) \frac{1}{\sin \theta}
                                                                           (d) \frac{1}{\cos\theta}
                                                                           Answer:- (a) \frac{\sin \theta}{\cos \theta}
          \cot \theta = \dots
(a) \frac{\sin \theta}{\cos \theta} (b) \frac{1}{\tan \theta} (c) \frac{1}{\sin \theta}
Q 6.
                                                                           Answer:- (b) \frac{1}{\tan \theta}
          What is the value of \sin 0^{\circ}?
Q 7.
                                                     (c) \frac{1}{2}
                                                                          (d) \frac{1}{3}
          (a) 0
                               (b) 1
                                                                           Answer:- (a) 0
          What is the value of \cos 0^{\circ}?
Q 8.
                                                     (c) \frac{1}{2}
                               (b) 1
          (a) 0
                                                                           Answer:- (b) 1
Q 9.
          What is the value of \tan 0^{\circ}?
          (a) 0
                               (b) 1
                                                                           Answer:- (a) 0
Q 10. What is the value of \tan 45^{\circ}?
                                                     (c) \frac{1}{2}
                                                                           (d) \frac{1}{3}
          (a) 0
                                (b) 1
                                                                           Answer:- (b) 1
Q 11. sin^2\theta + cos^2\theta = ?
          (a) 0
                        (b) 1
                                                     (c) 2
                                                                           (d) 3
                                                                           Answer:- (b) 1
Q 12. \tan (90^0 - \theta) = ?
          (a) \sin \theta (b) \cos \theta
                                                     (c) \cot \theta
                                                                           (d) \tan \theta
                                                                           Answer:- (c) \cot \theta
Q 13. \sin (90^{0} - \theta) = ?
          (a) \sin \theta (b) \cos \theta
                                                     (c) \cot \theta
                                                                           (d) \tan \theta
                                                                           Answer:- (b) \cos \theta
Q 14. What is the value of \sin 30^{\circ}?
                                                     (c) \frac{1}{2}
                                                                          (d) \frac{1}{\sqrt{2}}
          (a) 0
                                (b) 1
```

				Answ	ver:- (c) $\frac{1}{2}$
Q 15.	What is the va	alue of cos 60^{0}	?		2
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) $\frac{1}{\sqrt{2}}$	= 2
			2	• -	$ver:-(c) \frac{1}{2}$
Q 16.	What is the va	nlue of 2 $sin^2 A$	$+2 cos^2 A$?		2
	(a) 0	(b) 1	(c) 2	(d) 3	
	` '	. ,			ver:- (c) 2
Q 17.	As degree of 6 (a) Decreses				 the same (d) None of these
0.40					ver:- (b) Increases
Q 18.	As degree of 6 (a) Decreses				 the same (d) None of these
	(a) Decreses	(6) 1110	reases (e) he		ver:- (a) Decreses
			Cha	apter-	` ,
Q 1.		•			ation of the object is called
	(a) Line of sig	ht (b) Horizo	ontel line (c)		of elevation (d) angle of depression ver:- (a) Line of sight
Q 2.	The angle abo	ve the horizon	tal line is called		rei (a) Line of signit
	_				Line of sight (d) Right angle
				Answ	ver:- (a) angle of elevation
Q 3.	Name the ang horizontal line		e of sight and h	norizoi	ntal line when line of sight is below the
	(a) Acute ang	le (b) Right a	ingle (c) angle		pression (d) angle of elevation
			Cho	Answ 1-pter	ver:- (c) angle of depression
Q 1.	Circle and sph	ere are the two	o names of sam	-	
-, -:	(a) yes	(b) No		-	I shapes (d) Three dimensional shape
					Answer:- (b) No
Q 2.	A Circle is a co	=		(-1)	On a Trianala
	(a) in a plane	(b) On a line	(c) On a ray	(a) (On a Triangle Answer:- (a) In a plane
Q 3.	How many tar	ngents a circle o	can have?		Answer (a) in a plane
~	(a) 0	(b) 1	(c) Infinite	(d) !	5
					Answer:- (c) Infinite
Q 4.	•		nt may touch tl		
	(a) finite	(b) one	(c) two	(d) t	hree Answer:- (b) one
Q 5.	What is a line	called. interse	cting a circle in	two n	
ζ3.			(c) horizonta	•	(d) lateral line
	-				Answer:- (b) secant
Q 6.	= =	_	can be there to	a circ	
	(a) One	(b) Infinite	(c) Three		(d) Four Answer:- (b) Infinite
Q 7.	A common poi	int of a circle a	nd its tangent i	s calle	
	(a) Point		_		contact (d) and point
					Answer:- (c) Point of contact
Q 8.	=	lii are there in a		, n	G. 11
	(a) No one	(b) Three	(c) Two	(d) li	nfinite

					Answer:- (d)	Infinite
Q 9.	How many tar	ngents can be tl	here on a point	t on a cir	cle?	
	(a) Infinite	(b) one	(c) two	(d) thi	ree	
					Answer:- (b)	one
Q 10.	What is the le	ength of the tan	ngents drawn fr	rom an e	external point	to the circle?
	(a) equal	(b) Not equal		(d) 1 r		
	() [()	` '	` '	Answer:- (a)	egual
0 11.	How many ce	ntre(s) are the	re of two conce	entric cir		
	•	centre (b) tw				No centre
	(a) only one ((5) (1)	(0)	uc.c.	• •	only one centre
O 12	Δ tangent to t	the circle at the	noint of conta	nct is	, ,	•
Q 12.	-	cular (b) dia	=			
	(a) perpendic	caiai (b) aic	(6)	mediai		only one centre
O 13	How many cir	cle can pass th	rough three no	n colling	, ,	only one centre
Q 13.	(a) One	(b) Two	(c) None	iii comin	(d) Infinite	
	(a) One	(b) 1WO	(c) None		Answer:- (a)	one
0 14	A diameter is	to the	radius		Aliswei (a)	Offe
Q 14.		(b) thrice		.00	(d) equal	
	(a) twice	(b) tillice	(c) Tour tilli	ics		twico
0.15	If radius of a	circle is 5cm. th	on diamotor w	ill bo	Answer:- (a)	twice
Q 15.					0.00	
	(a) 8 cm	(b) 5 cm	(c) 10 cm			
			Ch.		r:- (c) 10 cm	
0.4	A			apter-12	•	
Q 1.		e is equal to		, IV 1	,	
	(a) $2\pi r$	(b) $2\pi rh$	(c) πr^2	(d) $\pi r l$		2
0.0	· · · · ·				Answer:- (c)	πr^2
Q 2.		ence of circle is		, n o	7	
	(a) πr^2	(b) $2\pi r$	(c) $l \times b$	(d) 2π		
•					Answer:- (b)	$2\pi r$
Q 3.	•	r of circle is call				
		rence				
	(c) lateral su	rface area	(d) diameter			_
					, ,	Circumference
Q 4.		rcumference to				
	(a) 2:3	(b) π	(c) 2:1	(d) 1: 2		
					Answer:-(b)	π
Q 5.		of sector of a ci				
	(a) $\frac{\pi r \theta}{1}$	(b) $\frac{\pi r^2 \theta}{360}$	(c) $2\pi r$	(d) πr^2	2	
	` 180	` 7 360	• •	` '		$\pi r^2 \theta$
					Answer:- (b)	360
Q 6.		ne length of an				
	(a) $\frac{\pi r^2 \theta}{}$	(b) $2\pi r$	(c) πr^2	(d) $\frac{\pi r \theta}{180}$		
	360	(2) = 111	(5)	180		$\pi r \theta$
					Answer:- (d)	180
Q 7.	Which of the	following is 3D	shape ?			
	(a) circle	(b) rectangle	(c) sphere	(d) sq	uare	
					Answer:- (c)	sphere
Q 8.	Which is the l	ongest-chord o	f a circle?			
	(a) Raduis	(b) diameter	(c) centres	(d) tar	ngent	
					Answer:- (b)	daimeter

Q 9.		ords are there		
	(a) 1	(b) daimeter	(c) centres	• •
0.10	How many ch	ords are there	of a circle?	Answer:- (d) infinite
Q 10.	-			
	(a) 1	(b) 2	(c) 3	(d) 4
				Answer:- (b) 2
Q 11.	Part of a circle	e bounded by c	hord and arc o	of a circle is called
		(b) sector		
				Answer:- (a) segment
Q 12.		unded betweer		
	(a) two chor	d(b) chord and	d diameter(c) t	
Q 13.	The larger see	gment of a circl	o is tho	Answer:- (d) two radii
Q 13.		_		(c) chord (d) centre
	(a) major se	5	ior segment	Answer:- (a) major segment
Q 14.	What is the a	alternative nam	e of a chord ?	(, , , ,
	(a) centre	(b) Rad	dius (c) ard	segment (d)line
				Answer:- (c) arc segment
				apter-13
Q 1.		mula for volum		
	(a) $4\pi r^2$	(b) $2\pi r^2$	(c) $5\pi r^2$	
				Answer:- (d) $\frac{4}{3}\pi r^3$
Q 2.	The volume o	f an object is:		<u>-</u>
	(a) Area	(b) capacity	(c) diameter	- · · ·
0.0	-			Answer:- (b) capacity
Q 3.		area of a cuboi		$+b \times h + h \times l$ (d) $(l \times b \times h)$
	(a) 4u	(b) 0 <i>a</i>	(c) 2 (t × b	Answer:- (c) $2(l \times b + b \times h + h \times l)$
Q 4.	Write the form	mula for volum	e of a cylinder	7
		(b) 2π	-	(d) $\pi r^2 h$
	, , 3	,	` ,	Answer:-(d) $\pi r^2 h$
Q 5.	Write the form	mula for curved	l surface area	` ,
	(a) $\pi r l$	(b) $\frac{1}{2}\pi r^2 h$	(c) $2\pi r$	(d) $\pi r^2 h$
	• ,	` ′ 3	` ,	Answer:-(a) $\pi r l$
Q 6.	Lateral surfac	e area of a cylir	nder	1 11 1 1 1 (a) 1 1 1 1
		(b) $2\pi rh$		(d) $\frac{1}{2}\pi r^2 h$
	(1)	(2)	(-, -	Answer:- (b) $2\pi rh$
Q 7.	Formula for tl	he volume of a	cone	(0, =10.70
	(a) $\pi r^2 h$	(b) $2\pi rh$	(c) $\pi r l$	(d) $\frac{1}{2}\pi r^2 h$
	. ,	,	` ,	Answer:- (d) $\frac{1}{3}\pi r^2 h$
0.0	Lataral surfac	o area of a sub	•	Allswei :- $(a) \frac{1}{3} \pi i$
Q 8.		e area of a cubo		(c) $4 \times (side)^2$ (d) $6 \times (side)^2$
	(a) $t \wedge b \wedge h$, (b) Z /	~ n ~ (t b)	Answer:- (c) $4 \times (side)^2$
Q 9.	What is the fo	ormula for the v	olume of a cu	
*	_	_	_	(d) None of these
		- •	_	Answer:-(b) $(Edge)^3$

Q 10.	How many he	eights of a cone	are there?		
	(a) 1	(b) 2	(c) 3	(d) 4	
					Answer:- (b) 2
			C	hapter-14	I
Q 1.	In a class-inte	erval the small	number in tha	at class int	ernal is called
	(a) upper lin	nit (b) lower l	imit (c)	size of cla	ss internal (d) class-mask Answer:- (b) lower limit
Q 2.	In a class-inte	erval, the larger	number in cl	ass intern	al is called
	(a) lower lim	nit (b) uppe	r limit (c)	mean	(d) median
					Answer:- (b) upper limit
Q 3.	Formula for t			5	
	(a) $\pi r^2 h$	(b) upper lim	it - lower limi	t (c) $\frac{\sum f_i}{\sum f_i}$	$\frac{x_i}{x_i}$ (d) $\frac{x+1}{2}$
				۷)	- <u> </u>
					Answer:- (c) $\frac{\sum f_i x_i}{\sum f_i}$
Q 4.		ize of class inte		Π.	
	(a) upper lim	nit - lower limit	(b) upper lir	nit (c) $\frac{\sum f_i}{\sum f_i}$	$\frac{x_i}{x_i}$ (d) lower limit
					ı er:- (a) upper limit - lower limit
Q 5.	Formula for n	node			(с) оррогина топо инте
•			$f_i x_i$	$\int f_1 - f_0$	$\left(\frac{n}{2}-c.f\right)$
	(a) $\left({2}\right)$ t	term (b) $\frac{\Delta}{\Sigma}$	$\frac{1}{2}f_i$ (c) $l=1$	$+$ $\left[\frac{1}{2f_1-f_0-f_0-f_0-f_0-f_0-f_0-f_0-f_0-f_0-f_0$	$\left[\frac{1}{f_2}\right] \times h$ (d) $l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$
					Answer:- (c) $l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right] \times h$
Q 6.	Formula for n		th	5 7 -	
	`	$\left(\frac{n}{2}\right)^{th}$ and $\left(\frac{n+1}{2}\right)^{th}$	term	(b) $\frac{\sum f}{\sum f}$, t
	$(c) l + \left[\frac{fi+}{2f_1-f_0}\right]$	$\left[\frac{xi}{6-f_2}\right] \times h$		(d) l +	$-\left(\frac{\frac{n}{2}-c.f}{f}\right)\times h$
					Answer:- (d) $l + \left(\frac{\frac{n}{2} - c.f}{f}\right) \times h$
Q 7.	What is mode	e of 2, 5, 3, 1,	3,7,3?		
	(a) 1	(b) 2	(c) 3	(d) 4	
					Anguage (c) 3
					Answer:-(c) 3
Q 8.	What is mear	of 2, 3, 4,?			
	(a) 2	(b) 3	(c) 4	(d) 1	
					Anguary (b) 2
					Answer:-(b) 3
Q 9.	What is media	an of 2, 3, 5, 7	7,9?		
	(a) 2	(b) 3	(c) 5	(d) 9	
					Answer:- (c) 5
Q 10.	Mode is the r	number			
	(a) which oc	cures maximur	m times (b)	which occ	cures minimum times
	(c) occurs or	nce	(d)	none of th	nese
				Answe	er:- which occures maximum times
Q 11.	Mode + 2 M	edian =?			

	(a) Mode	(b) 3 Median	(c) M	ean	(d) none of these
					Answer:- (b) 3 Median
				apter-15	5
Q 1.		$ot E) = \dots$			
	(a) 0	(b) 1	(c) 2	(d) 4	
					Answer:- (b) 1
Q 2.	-	an event that o	•		
	(a) 0	(b) 1	(c) 2	(d) 3	
					Answer:- (a) 0
Q 3.	Probabilty of				
	(a) 0	(b) 1	(c) 2	(d) 3	
		_			Answer:- (b) 1
Q 4.					and less than or equal to
	(a) 1,2	(b) 2, 3	(c) 0, 1	(d) 1,	1
					Answer: - (a) 0, 1
Q 5.	4	2	0	4	of getting a head or a tail
	(d) $\frac{-}{1}$	(b) $\frac{2}{3}$	(C) <u>-</u>	(u) $\frac{-}{2}$	Answer:- (d) $\frac{1}{2}$
Q 6.	How many ca	rds are there in	a deck of play	ing card	2
ζ 0.	(a) 13	(b) 26	(c) 52	(d) 39	
	(=) ==	(3) = 3	(0) 02	(0,) 0,5	Answer:- (c) 52
Q 7.	No. of cards o	of black colour i	n a deck of pla	ving car	• •
-		(b) 8			
	(-)	(-,	(-)	(-,	Answer:- (d) 26
Q 8.	No. of cards o	of Red colour in	a deck of play	ing card	, ,
	(a) 4			(d) 26	
	` '	• ,		` ,	Answer:- (d) 26
Q 9.	No. of face ca	rds in a deck of	playing card a	re	7.11511C11 (a) 20
			(c) 26	(d) 52	
					Answer:- (a) 12
Q 10.	When a die is	thrown, proba	bility of getting	g a com	posite number is
		(b) $\frac{1}{3}$	4		
	3	J	-	J	Answer:-(c) $\frac{1}{3}$
Q 11.	4	4			is the probability of getting a doublet
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{1}{12}$	1
					Answer:- (c) $\frac{1}{6}$

Q 12.	Digits 1,2,3,4,5,6,7,8,9 are written on 9 cards. What is probability of getting a odd number when a card is drawn radomly?						
	(a) $\frac{4}{9}$ (b) $\frac{5}{9}$ (c) $\frac{1}{9}$ (d) $\frac{2}{3}$						
	Answer:- (b) $\frac{5}{2}$						
	Questions, relating fill in blanks						
	Chapter-1						
Q 1.	Euclid's division algorithm is used to findof numbers (a) $L.C.M$ (b) $H.C.F$ (c) Prime factors (d) factorization Answer:- (b) $H.C.F$						
Q 2.	The prime factors of 15 are						
	(a) 3×2 (b) 3×3 (c) 3×5 (d) 3×4						
O 2	Answer:- (c) 3×5 H.C.F of 12 and 15 is						
Ų 3.	(a) 5 (b) 3 (c) 4 (d) 1						
	Answer:- (b) 3						
Q 4.	$\sqrt{5}$ is a/ an number.						
	(a) Irrational number (b) rational number(c) prime number (d) whole number Answer:- (a) Irrational number						
Q 5.	3 is a/an number.						
	(a) Irrational number (b) perfect square (c) rational number (d) least prime number Answer:- (c) rational number	er					
Q 6.	Product of two numbers =						
Q 7.	Rational form of 0.3 is						
	(a) $\frac{3}{10}$ (b) $\frac{3}{100}$ (c) $\frac{30}{10}$ (d) $\frac{3}{1000}$						
	Answer:- (a) $\frac{3}{10}$						
Q 8.	In a rational number $x=rac{p}{q}$, in which q is a prime factor in the form ofthen decir	nal					
	form of x will be terminating (a) $2^n 3^m$ (b) $2^n 7^m$ (c) $2^n \times 5^m$ (d) $3^m \times 5^n$						
	Answer:- (c) $2^n \times 5^m$						
Q 9.	The decimal form of a rational number $\frac{17}{8}$ will be						
	(a) Terminating (b) Non terminating (c) Not possible (d) Not difined Answer:- (a) Terminating						
Q 10.	If $x = \frac{p}{q}$ is a rational number and the prime factorisation of q is not ni the form 2^n	× 5 ^m					
	then the decimal expansion of x will berepeating (a) Terminating (b) Non-terminating (c) Not-defined (d) None of these Answer:- (b) Non-terminating						
Q 11.	Number $7 \times 11 \times 13 + 13$ is						
-	(a) composite number (b)prime number (c)perfect square (d)square number Answer:- (a) composite number						
	Chapter-2						
Q 12.	Which of the following is a quadratic polynomial?						
	(a) $ax + b, a \neq 0$ (b) $ax^2 + bx + c, a \neq 0$ (c) $ax^3 + bx^2 + cx + d, a \neq 0$ (d) ax						

Answer:-	h)	ax^2	+ h	x +	c a	±	n
~!!3WC!!	ω_I	ил	I D.	<i>ռ</i> ၊	ι	_	v

- Q 13. A quadratic polynomial has maximum....zeroes
 - (a) 2
- (b) 1
- (c) 3
- (d) 4

Answer:- (a) 2

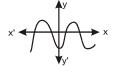
- Q 14. Sum of the zeroes of a quadratic polynomial = -
 - (a) c
- (b) a
- (c) *b*
- (d) None of these

Answer:- (c) b

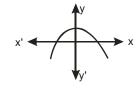
- Q 15. The product of zeros of a quadratic polynomial $=\frac{...}{a}$
 - (a) c
- (b) a
- (c) b
- (d) 1

Answer:-(a) c

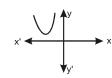
- Q 16. In a quadratic polynomial, highest power of the variable is
 - (a) One
- (b) Two
- (c) Three
- (d) Four


Answer:- (b) Two

- Q 17. In the given graph of polynomial y = p(x), number of zeros is
 - (a) 1
- (b) 2
- (c) 3
- (d) 4


Answer:-(a) 1

- Q 18. In the given graph of polynomial y = p(x), number of zeros are
 - (a) 2
- (b) 3
- (c) 4
- (d) 1


Answer:- (c) 4

- 19. In the given graph of polynomial y = p(x), number of zeros are
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

Answer:- (b) 2

- Q 20. In the given graph of polynomial y = p(x), number of zeros are
 - (a) 1
- (b) 2
- (c) 0
- (d) 3

Answer:- (c) 0

Chapter-3

- Q 21. System of equations $a_1 x + b_1 y + c_1 = 0$, $a_2 x + b_2 y + c_2 = 0$ is called
 - (a) pair of quadratic equation
- (b) pair of linear equation in two variables
- (c) pair of cubic equation
- (d) pair of equation of four degree

Answer:- (b) pair of linear equation in two variables

Q 22. What does relation $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ of coefficients of linear pair of equations.

$$a_1 x + b_1 y + c_1 = 0$$
 , and $a_2 x + b_2 y + c_2 = 0$ implies

- (a) Intersecting lines (b) parallal lines (c) co-incident lines
- (d) none of these

Answer:- (a) Intersecting lines

Q 23. What does relation $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ show for the linear pair

$$a_1x + b_1y + c = 0$$
, $a_2x + b_2y + c_2 = 0$, implies

(a) Intersecting lines (b) parallal lines (c) co-incident lines (d) none of these

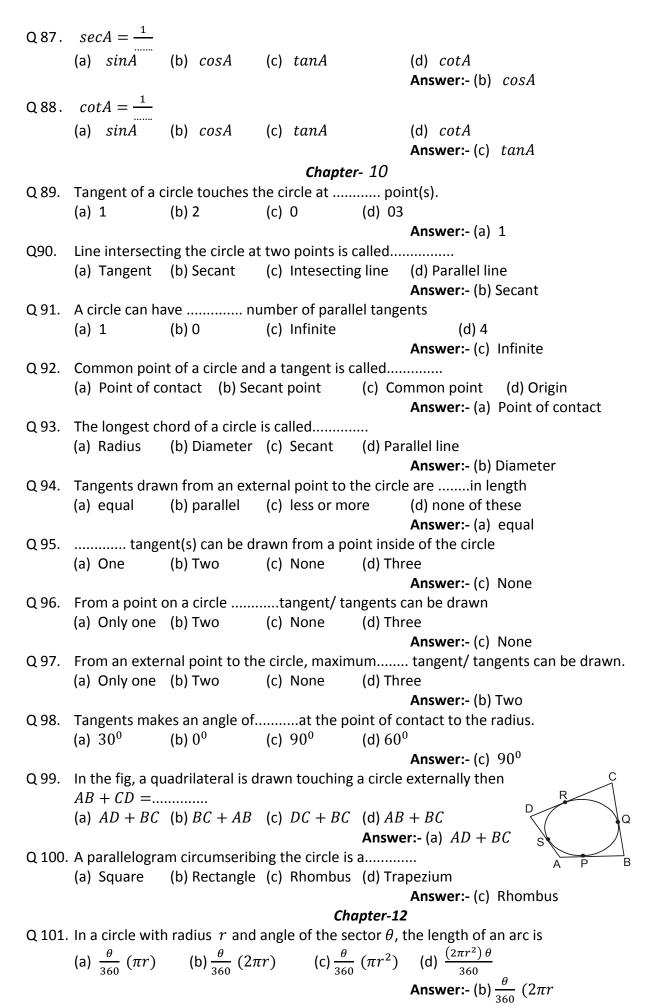
Answer:- (b) parallal lines

Q 24. In pair of linear equations the relation $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ between the coefficients a_1 , b_1 , c_1 and a_2 , b_2 , c_2 shows......

	(a) Intersection	ng lines (b) pa	arallal lines (c	c) co-inc	ident line (d) none of these Answer:- (a) Intersecting lines
Q 25.	If graph of the		$b_1y + c_1 = 0$	and a	$c_2x + b_2y + c_2 = 0$ are coincedent
			nfinitely many	(c) no	solutions (d) two solutions Answer:- (b) infinitely many
Q 26.	The equation	s 3x - 5y = 2	60, 6x - 10y	= 40	assolutions
					solution (d) only two solution Answer:- (a) many solution
Q 27.	For the equat	tions $x - 3y -$	3 = 0, 3x -	9y - 2	= 0, graph shows
	(a) intersection	ng lines (b) pa	rallal lines	(c) coi	ncedent lines (d) none of these Answer:- (b) parallal lines
Q 28.	For unique so	lution of linear	equations 4x	+ <i>Py</i> +	8 = 0, $2x + 2y + 2 = 0$ we get
		(b) $P \neq 4$		-	
	•	. ,	•	` ,	Answer:- (b) $P \neq 4$
			Ch	apter-4	
Q 29.	Quadratic equ	uation $ax^2 + b$	bx + c = 0, ha	as two e	qual and real roots if
	(a) $D > 0$	(b) $D < 0$	(c) $D = 0$	(d) D	= 2
					Answer:- (c) $D=0$
Q 30.		of quadratic e	=	=	
	(a) $D > 0$	(b) $D < 0$	(c) $D = 0$	(d) No	
0.21	To find the we	a+a af +ba aad		+ la a a	Answer:- (b) $D < 0$
Q 31.		-	iratic equation,	, the qua	adratic formula is
	$x = \frac{1}{2}$ (a) $-b$	2a			
	(a) $-b$	(b) <i>b</i>	(c) <i>a</i>	(d) $-a$	
O 32	Faulation v ($2x+3)=x^2+$	L 1 ic a		Answer:- (a) $-b$
Q J2.				on (c) (Cubic equation (d) none of these Answer:- (b) quadratic equation
Q 33.	In quadratic e	equation $ax^2 +$	-bx+c=0,	formula	for the discriminent $D=b^2$
	(a) 2 <i>ac</i>		(c) 4 <i>ac</i>	(d) ac	
	. ,	,	•	` '	Answer:- (c) $4ac$
Q 34.	Quadratic equ	uation $ax^2 + b$	bx + c = 0, has	as two d	lifferent- real roots if
	(a) $D > 0$	(b) $D < 0$	(c) $D = 0$	(d) <i>D</i>	
				_	Answer:- (a) $D > 0$
0.25	Famila famila	th +		apter-5	
Q 35.		e n^{th} term of (b) $n-1$		_)a
	(a) 11	(b) $n-1$	(c) $n+1$	(u) II	Answer:- (b) $n-1$
0.20	NA/wite the maio	s: + a af a	AD. 10 12	2	7.11.000.000 (2) 10 1
Q 36.		sing term of an			
	(a) 8	(b) -5	(c) 10	(d) 15	
O 37	In an ΔP· 2 /	, 6, 8, the	- common diffa	erence i	Answer:- (a) 8
α 37.		(b) 4		(d) 1	•
	· /	. ,	` '	· / -	Answer:- (a) 2

Q 38.	The first term								
	(a) 2,5	(b) 2, 7	(c) $2, -5$	(d) -2					
		_			Answer:- (a) 2,5				
Q 39.	The sum of n terms of an AP whose first term is ' a ' and common difference is ' d ' is								
	$S_n = \frac{n}{2} \left[\cdots \cdots \right]$								
	(a) a	(b) 3 <i>a</i>	(c) $2a$	(d) 4 a					
					Answer:- (c) 2 <i>a</i>				
Q 40.	If last term of	an AP is l , the	n sum of it	s all terms is	$S = \frac{n}{2}$ ()				
	(a) $a+d$	(b) $a + l$	(c) $a + 6$	(n-1) l	(d) $a + nl$				
					Answer:- (b) $a + l$				
				Chapter-6					
Q 41.					(1)				
	(a) Congruen	t (b) Si	milar (c) Equal	(d) None of these				
0.42	All				Answer:- (b) Similar				
Q 42.	•		milar (s) Faual	(d) None of those				
	(a) Congruen	t (b) Si	iiiiai (c) Equal	(d) None of these Answer:- (b) similar				
O 43	All equilatera	al triangles are			Allswei:- (b) Sillillai				
Q 43.	•	t (b) Si		c) Foual	(d) Not equal				
	(a) congracii	(2) 3.		o, Equa.	Answer:- (b) Similar				
Q 44.	The polygons	with same nur	nber of sid	les are simila	r if (1) corresponding angles				
		corresponding			. ,				
	(a) Equal, pro	portional	(1	o) Proportion	al, equal				
	(c) Equal, equ	lal	((d) Proportior	nal, proportional				
		Р			Answer:-(a) Equal, proportional				
	P △	60°	\						
Q 45.	fig §	£ .	\gamma_gamma	2					
-	Z80°	40° 80°	40°						
	Q / 1 3 cm	R Q	S cm R	\	(1) N				
	(a) Conguren	t (b) Sir	nilar (c) Equal	(d) None of these				
		۸			Answer:- (b) Similar				
	,	A		A					
	«/		E	\wedge					
Q 46.			%/ %/		triangles are				
Q 40.	D \80°		Ω B △8	00	C				
	B <u></u>	6cm	C	3cm					
	(a) Conguren	t (b) Sir	nilar (c) Equal	(d) None of these				
0.47				-11-11	Answer:- (b) Similar				
Q 47.					m of the squares of the other two				
	(a) 30°	e angle opposi (b) 60°	(c) 90°	(d) 100	ე ∘				
	(a) 30	(b) 00	(C) 70	(d) 100	Answer:- (c) 90°				
Q 48.	In a right triar	ngle, the squar	e of the h	potenuse is e	equal to the sum of squares of other				
5.	_	s calledt	=						
	(a) Pythagora			c) Similarity	(d) Basic proportionality				
	· · ·			,	Answer:- (a) Pythagoras				

Q 49.	Two figures whose s	hapes are same	but conditionall	y measurments are not e	qual, are
	(a) Congurent	(b) Similar	• •		
Q 50.	· · · · · · · · · · · · · · · · · · ·	r two sides are d (b) Thales	of a triangle to i ivided in the sa proportionality	Answer:- (b) Similar ntersect the other two sigme ratio. This theorem is theorem Answer:- (b) Thales	
Q 51.	In the fig DE BC	and $\frac{AD}{DB} = \dots$		D A F	
	(a) $\frac{AB}{AC}$ (b) $\frac{DB}{BC}$	$\frac{E}{C} \qquad \qquad \text{(c) } \frac{AE}{EC}$	(d) $\frac{AC}{AE}$	B C Answer:- (c) $\frac{AE}{EC}$	
			Chapter-7	EC	
Q 52.	The co-ordinates of (a) (0,0) (b) (•		Answer:- (a) (0,0)	
Q 53.	The distance formul	a for the points	$A(x_1, y_1)$ and	$B(x_2, y_2) \text{ is } \sqrt{(x_2 - x_1)}$	$0^2 + ()^2$
	(a) $y_2 - 1$ (b) y	$y_1 - 1$ (c) y_2		$-y_2$ Answer:- (c) $y_2 - y_1$	
Q 54.	Co-ordinates of a position (a) $(x,0)$ (b) (axis are 0) (d) (0,	, , , , , , , , , , , , , , , , , ,	
Q 55.	Co-ordinates of a point (a) $(0, y)$ (b) (axis are $axis$ (d) $axis$	0)	
Q 56.	Co-ordinates of mid	-point are $\left(\frac{x_1 + \dots}{2}\right)$	$\frac{y_1 + \dots}{2}$	Answer:- (a) $(0,y)$	
	(a) x_2 , y_1 (b) x_2		,0) (d) 1,1		
Q 57.	The co-ordinates of are $\left(\frac{mx_2 + nx_1}{\dots}, \frac{my_2}{\dots}\right)$			he points $A(x_1, y_1)$ and	$B(x_2, y_2)$
	(a) $m-n$ (b) n	n+n (c) n		n^2-n^2 Answer:- (b) $m+n$	
Q 58.	The distance between (a) $\sqrt{x^2 + 0^2}$ (b)		y) is	, ,	
	(a) $\sqrt{x^2 + 0^2}$ (b) $\sqrt{x^2 + 0^2}$	$\sqrt{x^2 + 0^2}$ (c) $\sqrt{x^2 + 0^2}$,	(d) xy Answer:- (c) $\sqrt{x^2 + y^2}$	
		Cł	napter- 8, 9		
Q 59.	$\sin 30^o = \dots$	Г.			
	(a) $\frac{1}{2}$ (b)	$\int_{\frac{3}{2}}^{\frac{3}{2}}$ (c) 1	(d) 2	1	
0.60	$\sin 60^{\circ}$ –		,	Answer:- (a) $\frac{1}{2}$	
Ų 00.	$\sin 60^{\circ} = \dots$ (a) $\frac{1}{2}$ (b) $\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$ (c) 0) (d) 1		
	2	2	(\omega) 1		


```
Answer:- (b) \frac{\sqrt{3}}{3}
Q 61. \cos 60^{\circ} = \dots
       (a) \frac{1}{2} (b) \frac{\sqrt{3}}{2} (c) 1
                                                        (d) 0
                                                               Answer:- (a) \frac{1}{2}
Q 62. \cos 30^{\circ} = \dots
       (a) \frac{1}{2} (b) \frac{\sqrt{3}}{2}
                                   (c) 1
                                                        (d) 2
                                                                       Answer:- (b) \frac{\sqrt{3}}{2}
                            \tan 30^{\circ} =
Q 63. \tan 30^{\circ} = \dots
       (a) \frac{1}{\sqrt{3}} (b) \sqrt{3}
                                   (c) 1
                                                        (d) 3
                                                               Answer:- (a) \frac{1}{\sqrt{2}}
Q 64. \tan 60^{\circ} = \dots
       (a) \frac{1}{\sqrt{3}} (b) \sqrt{3} (c) 1
                                                        (d) 2
                                                               Answer:- \sqrt{3}
Q 65. sin^2\theta + cos^2\theta = ....
        (a) -1
                  (b) 0
                                       (c) 1
                                                        (d) 2
                                                               Answer:- (c) 1
Q 66. cosec^2\theta - cot^2\theta = \dots
                                                        (d) \frac{1}{2}
        (a) -1 (b) 1
                                    (c) 0
                                                                Answer:- (b) 1
Q 67. sec^2\theta - tan^2\theta = \dots
                                                               (d) \frac{1}{3}
        (a) 1 (b) -1
                                         (c) 0
                                                                Answer:- (a) 1
Q 68. \sin \theta = \frac{Perpendicular}{1}
                                       (b) Base
                                                         (c) Perpendicular
        (a) Hypotenuse
                                                                                                (d) 1
                                                               Answer:- (a) Hypotenuse
Q 69. \cos \theta = \frac{1}{Hypotenuse}
                                                         (c) Perpendicular
        (a) Hypotenuse
                                       (b) Base
                                                                                                (d) 1
                                                               Answer:- (b) Base
Q 70. \tan \theta = \frac{Perpendicular}{1}
                                                         (c) Perpendicular
                                       (b) Base
        (a) Hypotenuse
                                                                                                (d) 1
                                                                Answer:- (b) Base
Q 71. \sin^2 \theta = 1 - \dots
        (a) tan^2\theta (b) sec^2\theta (c) cos^2\theta (d) cot^2\theta
                                                                Answer:- (c) cos^2\theta
Q 72. \sec^2 \theta = 1 + \dots
```

Answer:- (a) $tan^2\theta$

(a) $tan^2\theta$ (b) $sec^2\theta$ (c) $cos^2\theta$ (d) $sin^2\theta$

Q 73. $sin 45^0 = \cdots$

	(a)	$\frac{1}{\sqrt{2}}$	(b)	1	(c)	1/2	(d)	2	Answer:- (a)	1
Q 74.		$45^0 = \cdots$		$\frac{1}{\sqrt{2}}$	(c)	$\frac{1}{2}$	(d)	$\frac{1}{\sqrt{3}}$		1
Q 75.		$a45^0 =$		$\frac{1}{\sqrt{2}}$	(c)	1	(d)	2	Answer:- (b)	$\frac{1}{\sqrt{2}}$
Q 76.	(H)	ypotenus	e) ² :	$= (Base)^2$	+ (.		_)2	•	Answer:- (c) <i>use</i> (d) 1	1
O 77		$90^0 - \theta)$				ω (ο)	Пуро			Perpendicular
Q / / .				cosθ	(c)	tanθ	(d)	со	tθ Answer:- (b)	$cos\theta$
Q 78.		$s(90^0 - \theta)$ $sin\theta$		 cosθ	(c)	tanθ	(d)	со	tθ Answer: - (a)	sin heta
Q 79.	tan	$a (90^0 - \theta)$	9) =	•••••						
	(a)	$sin\theta$	(b)	secθ	(c)	cotθ	(d)	co	sθ Answer:- (c)	$cot\theta$
Q 80.		$(90^0 - \theta)$ $cosec\theta$		 secθ	(c)	cotθ	(d)	sii	nθ Answer:- (a)	cosecθ
Q 81.				= secθ		cotθ	(d)	sii		
Q 82.	sin1	$\frac{18^0}{72^0} = \dots$	• • • • • •			0			Answer:- (b)	secθ
				1		90°	(d)	2	Answer:- (b)	1
Q 83.				9		0	(d)	2	Answer:- (c)	0
Q 84.				4 = 9		0	(d)	2	A ngues (h)	0
Q 85.	1+t 1+t (a)	$\frac{\tan^2 A}{\cot^2 A} = \dots$	(b)	 cot ² A	(c)	tan²A			Answer:- (b) (d) sin^2A Answer:- (c)	
Q 86.		$secA = \frac{1}{sinA}$		cosA	(c)	tanA			(d) cotA Answer:- (a)	

Q 102.					the area of the sector is
	(a) $\frac{\theta}{720}$ (πr^2)	(b) $\frac{\theta}{360}$ (2 π	(r^2)	$(c)\frac{\theta}{360} (\pi r^2)$	(d) $\frac{3\pi r^2 \theta}{360}$
					Answer:- (c) $\frac{\theta}{360}$ (πr^2)
Q 103.	If the circumfr of the circle is		e and are	a of the circle	e are numerically equal, then the radius
	(a) Two units	(b) π units		(c) 4 units	(d) 5 units
					Answer:- (a) Two units
Q 104.	$\pi = \frac{circumfer}{}$	rence of circle			
		(b) diameter	(c) area	(d) ra	dius
					Answer:- (b) diameter
Q 105.		ajor sector = x			
	(a) radius	(b) diameter	(c) area	a of minor se	ctor (d) area of minor segment
0 106	The minute ha	and of the clock	covers a	an angle of	Answer:- (c) area of minor sectorin one minute
Q 100.		(b) 60°		_	
	. ,	,	` '	()	Answer:- (c) 6°
Q 107.					area of corresponding
	(a) circle	(b) triangle	(c) radi	us (d) dia	
				Chapter-1	Answer:- (b) triangle
O 108.	Circumferen	ces of a circle o	of radius i	-	5
		(b) $2\pi r$			r
					Answer:- (b) $2\pi r$
Q 109.					olume of cylinder is
	(a) Zπrn	(b) $2\pi r^2 h$	(c) πr^2	n (α) 3π	$m^2 n$ Answer:- (c) $\pi r^2 h$
O 110.	If <i>r</i> is radius a	and <i>h</i> is height	of cone t	hen volume	. ,
•		(b) $\frac{1}{3}\pi r^2 h$			
		3	(-,	(-,	Answer:- (b) $\frac{1}{3}\pi r^2 h$
O 111	If r is radius	and Lis slant he	aight of co	nna than cur	ved surface area of cone is
Q III.		(b) $2\pi r^2$	_		
			(-,	(-,	Answer:- (a) $\pi r l$
Q 112.		of sphere then			
	(a) $4\pi r^2$	(b) $2\pi r^2$	(c) $\frac{4}{3}\pi r$	$(d) \frac{2}{3} \pi$	πr^3
			_	-	Answer:- (c) $\frac{4}{3}\pi r^3$
Q 113.	If <i>r</i> is radius (of sphere then	its surfac	ce area is	3
	(a) $4\pi r^2$	(b) $2\pi r^2$	(c) $3\pi r$	2 (d) πr	
					Answer:- (a) $4\pi r^2$
Q 114.					s lateral surface area is
	(a) $\pi r l$	(b) $2\pi rh$	(c) πr^2	$h (d) - \pi$	
0 115	Valuma of a	aubaid is			Answer: - (b) $2\pi rh$
Q 115.	Volume of a (a) <i>lbh</i>	cupola is	(b) 2(<i>l</i> -	+ <i>h</i>) × <i>h</i>	
	(c) $2(lb + hh)$	(l+hl)	(d) $\sqrt{l^2}$	$\frac{1}{a^2 + b^2 + h^2}$	
	(5) = (50 1 0)	· · · · · · · · · · · · · · · · · · ·	()		Answer:- (a) lbh
Q 116.	Lateral surfa	ace area of a cu	uboid is		

(b) $2(l + b) \times h$ (d) $\sqrt{l^2 + b^2 + h^2}$ (a) *lbh* (c) 2(lb + bh + hl)Answer:- (b) $2(l+b) \times h$ Q 117. The volume of a cube is (d) a^2 (a) $a \times a \times a$ (b) $4 \times a \times a$ (c) $6 \times a \times a$ Answer:- (a) $a \times a \times a$ Q 118. The total surface area of a cube is (a) $a \times a \times a$ (b) $4 \times a \times a$ (c) $6 \times a \times a$ (d) a^{2} **Answer:-** (c) $6 \times a \times a$ Q 119. The volume of a frustum of cone is (a) $\frac{1}{3}\pi r_1^2 h$ (b) $\frac{1}{3}\pi r_2^2 h$ (c) $\frac{1}{3}\pi (r_1^2 + r_2^2 + r_1 r_2) h$ (d) $\pi r_1^2 h$ **Answer:**- (c) $\frac{1}{3}\pi(r_1^2 + r_2^2 + r_1r_2)h$ Q 120. The curved surface area of a frustum of cone is (b) $\pi r_2 l$ (c) $\pi (r_1 + r_2) l$ (d) $2\pi r_1 l$ **Answer:**-(c) $\pi(r_1 + r_2)l$ Q 121. Volume of solid made of combination of two solids is equal to the (a) sum of volumes (b) substraction of volumes (c) multiplication of volumes (d) division of volumes Answer:- (a) sum of volumes Chapter-14 Q 122. 3 Median =+ 2 Mean (a) Medien (b) Mode (c) Mean (d) Frequency Answer:- (b) Mode Q 123. Class mark = $\frac{upper\ class\ limit+lower\ class\ limit}{}$ (c) 3 (a) 1 (b) 2 (d) 4 **Answer:-** (b) 2 Q 124. Mode = $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ where l is (a) Lower limit of modal class (b) Upper limit of modal class (c) Length

(d) Breath

Answer:- (a) Lower limit of modal class

- Q 125. Madia = $l + \frac{\frac{n}{2} c.f}{f} \times h \text{ where } c.f =$
 - (a) Cummulative frequency of class preceding the median class
 - (b) Frequency of median class
 - (c) Cummulative frequency of class succeeding the median class
 - (d) Frequency

Answer:- (a) Cummulative frequency of class preceding the median class

Q 126. Formula for the computation of mean by step deviation method is..........

(a)
$$\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$$
 (b) $\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$ (c) $\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$ (d) $\bar{x} = a + \frac{\sum f_i d_i}{\sum f_i}$

Answer:- (a) $\bar{x} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$

Chapter-15

Q 127. $P(E) + P(\overline{E}) = \cdots$

	(a) 1	(b) 2	(c) 3	(d) 4	Į.
					Answer:- (a) 1
Q 128.	The Probability (a) -1,1	="	greater (c) 1,2	than or equ (d) -	ual toand less than or equal to 1,-2
					Answer:- (b) 0,1
Q 129.	The Probability	y of an event th		= =	pen is such an event is called
	(a) 1, sure eve			(b) 0, impos	
	(c) 0, possible	event		(d) 1, impos	
0 120	Mhich numbo	r cannot ha tha	nrahah	ility of an av	Answer:- (a) 1, sure event
Q 130.	2	r cannot be the			
	(a) $\frac{2}{3}$	(b) 15%		(c) -1.5	(d) 0.2
	Numbe	er of outcomes fo	wourahle	to E	Answer:- (c) -1.5
Q 131.		er of outcomes fa			
	` '	foutcomes not			
	•	all impossible			
	` '	f outcomes favo			
	(a) Number of	all possible ou) Number of all possible outcomes of E
O 132	In a deck of 52	cards, number		•	·
Q 132.	(a) 8	(b) 12		(d) 4	
	(=)	(2) ==	(0) =0	(-,	Answer:- (b) 12
Q 133.	A coin is tossed	d once, the pro	bability	of getting H	lead is
	(a) 0	(b) $\frac{1}{2}$	(c) $\frac{1}{2}$	(d) $\frac{1}{4}$	
		2	3	4	Answer:- (b) $\frac{1}{2}$
∩ 13 <i>/</i> l	A die is thrown	n once, probabi	ility of a	etting 6 is	Z
Q 134.				(d) $\frac{1}{5}$	
	(a) 1	(b) 0	$\binom{C}{6}$	(u) - 5	4
					Answer:- (c) $\frac{1}{6}$
Q 135.	The sum of the			entary ever	nts of an experiment is
	(a) 0	(b) 2	(c) 1	(d) $\frac{1}{2}$	
		_		_	Answer:- (c) 1
Q 136.	If $P(E) = 0.9$	then $P(\overline{E}) = [$ (b) 0			
	(a) 1	(b) 0	(c) 0.1	(d) 0	
0 127	A la		0 la : 4 . a		Answer:- (c) 0.1
					nd 4 green marbles. What is the
ŀ	•	-			rawn at random from the box.
	(a) $\frac{5}{17}$	(b) $\frac{8}{17}$	(C) $\frac{17}{17}$	(d) $\frac{1}{1}$	- /
					Answer:- (a) $\frac{5}{17}$